Minggu, 20 Juli 2014

Siklus Nutrient



SIKLUS NUTRIENT




 








Oleh :

Hidayat Insad
   NIM  : 13.01.04.0.010-01





PROGRAM STUDI AGROTEKNOLOGI
FAKULTAS PERTANIAN
UNIVERSITAS SAMAWA (UNSA)
 SUMBAWA BESAR
TAHUN 2014
DAUR NUTRISI
Dalam ekosistem terestrial sumber/mineral dari tanah, secara alami status nutrisi dipelihara oleh adanya proses daur Biogeokimia. Di dalam agroekosistem sebagian besar nutrisi terikut sebagai hasil panen dan tidak kembali lagi secara alami sehingga diperlukan pemupukan. Karena itu daur yang biasa terjadi terputus/asiklik.
Keberadaan makhluk hidup di dunia ini  tergantung pada aliran energi dan siklus materi melalui ekosistem. Kedua proses tadi mempengaruhi jumlah dari organisme-organisme, kecepatan proses metabolisme, dan kompleksitas dari komunitas. Energi dari materi mengalir melalui ekosistem bersama-sama sebagai materi organik, satu sama lainnya tidak bisa dipisah-pisahkan. Tetapi aliran energi adalah satu arah, sekali dimanfaatkan oleh ekosistem akan hilang keluar dari sistem. Sedangkan materi, dalam hal ini melakukan suatu siklus. Atom dari kalsium atau karbon berkemampuan untuk mengalir melalui makhluk hidup dan bagian non-hidup berkali-kali, atau dapat pula dipindah dari suatu ekosistem ke ekosistem lainnya. Berdasarkan ke dua proses itulah ekosistem berkemampuan untuk menjada fungsinya, dan merupakan karakteristika seluruh biosfer.
Siklus hara adalah sistem daur ulang alam. Semua bentuk daur ulang memiliki umpan balik yang menggunakan energi dalam proses menempatkan sumber daya material kembali mulai digunakan. Daur ulang dalam ekologi diatur untuk sebagian besar selama proses dekomposisi. Ekosistem menggunakan keanekaragaman hayati dalam jaring makanan yang mendaur ulang bahan-bahan alami, seperti nutrisi mineral, yang meliputi air. Daur ulang dalam sistem alam adalah salah satu dari sekian banyak jasa ekosistem yang mendukung dan memberikan kontribusi pada kesejahteraan masyarakat manusia. Nutrisi yang diperlukan untuk menghasilkan materi organik disirkulasikan ke seluruh ekosistem dan dapat dimanfaatkan berkali-kali. Apabila tumbuhan dan juga hewan mati akan didekomposisikan oleh kegiatan bakteria dan jamur, nutrisi kemudian dikembalikan ke lingkungan abiotik membentuk kumpulan nutrisi sebagai gudang atau reservoir. Dalam ekosistem daratan nutrisi biasanya dilepaskan dan berkumpul dalam tanah, yang kemudian nutrisi-nutrisi ini akan diambil kembali oleh tumbuhan dari gudangnya ini.
Dengan proses siklus materi ini komponen-komponen organik dan anorganik dipautkan satu sama lain sedemikian rupa sehingga sulit dipisahkan satu sama lainnya.
Tumbuhan merupakan komponen yang sangat penting, dalam proses aliran energi dan siklus materi, sehingga terjadinya keterpautan antara komponen biotik dengan komponen abiotik dalam ekosistem. Ada dua hal yang termasuk ke dalam siklus materi, yaitu :
  1. Kepentingan Nutrisi dalam Ekosistem
Makhluk hidup memerlukan minimal 30 sampai 40 unsur kimia, dari sekitar 92 unsur-unsur kimia yang diketahui, untuk keperluan hidup dan pertumbuhannya. Nutrisi juga dikenal sebagai garam-garam biogenik yang dapat dikelompokkan dalam dua kelompok utama, yaitu nutrisi makro dan nutrisi mikro.
a.         Nutrisi makro
Nutrisi ini diperlukan relatif dalam jumlah yang banyak, dan mempunyai peranan kunci dalam pembentukan protoplasma makhluk hidup. Nutrisi-nutrisi penting yang termasuk kelompok ini adalah hidrogen, karbon, oksigen dan nitrogen. Mereka bersama-sama membentuk sekitar 95 % dari berat kering materi hidup. Keempat nutrisi ini didapatkan dari bentuk gas di atmosfir. Nutrisi lainnya yang termasuk nutrisi makro ini, yang diperlukan dalam jumlah yang relatif lebih sedikit diantaranya adalah kalium, posfor dan sulfur.
b.         Nutrisi mikro
Nutrisi ini diperlukan dalam jumlah yang jauh lebih sedikit, tetapi sangat penting untuk kehidupan. Minimal ada sepuluh nutrisi mikro yang diperlukan oleh tumbuhan. Beberapa nutrisi mikro seperti besi, tembaga, seng, karbon, dan boron, berasal dari batuan yang terlepas akibat proses penghawaan.
  1. Siklus Biogeokimia
Telah dipahami bahwa berfungsinya ekosistem tergantung pada sirkulasi dan nutrisi. Apabila nutrisi tidak tersirkulasikan, maka suplai yang telah terjadi akan sia-sia dan pertumbuhan menjadi terbatas. Begitu pentingnya permasalahan ini, beberapa penelitian telah dilakukan untuk menentukan jalannya siklus nutrisi ini.
Berbeda dengan energi, materi kimia yang berupa unsur-unsur penyusun bahan organik/nutrisi dalam ekosistem, berpindah ke trofik-trofik rantai makanan tanpa mengalami pengurangan, melainkan berpindah kembali ke tempat semula. Unsur-unsur tersebut masuk ke dalam komponen biotik melalui udara, tanah atau air. Perpindahan unsur kimia dalam ekosistem melalui daur ulang yang melibatkan komponen biotik dan abiotik ini dikenal dengan sebutan daur biogeokimia. Hal ini menunjukkan adanya hubungan antara komponen biotik dengan abiotik dalam suatu ekosistem. Siklus biogeokimia meliputi : siklus air, siklus sulfur, siklus pospor, siklus nitrogen, Siklus karbon dan oksigen.
·         SIKLUS AIR
Siklus atau daur merupakan suatu perputaran atau lingkaran. Siklus hidrologi adalah perputaran air dengan perubahan berbagai bentuk dan kembali pada bentuk awal. Hal ini menunjukkan bahwa volume air di permukaan bumi sifatnya tetap. Meskipun tetap dengan perubahan iklim dan cuaca, letak mengakibatkan volume dalam bentuk tertentu berubah, tetapi secara keseluruhan air tetap. Siklus air secara alami berlangsung cukup panjang dan cukup lama. Sulit untuk menghitung secara tepat berapa lama air menjalani siklusnya, karena sangat tergantung pada kondisi geografis, pemanfaatan oleh manusia dan sejumlah faktor lain.
Siklus air atau siklus hidrologi adalah sirkulasi air yang tidak pernah berhenti dari atmosfer ke bumi dan kembali ke atmosfer melalui kondensasi, presipitasi, evaporasi dan transpirasi.
Kondensasi (pengembunan)
Ketika uap air mengembang, mendingin dan kemudian berkondensasi, biasanya pada partikel-partikel debu kecil di udara. Ketika kondensasi terjadi dapat berubah menjadi cair kembali atau langsung berubah menjadi padat (es, salju, hujan batu (hail)). Partikel-partikel air ini kemudian berkumpul dan membentuk awan.
Presipitasi
Presipitasi pada pembentukan hujan, salju dan hujan batu (hail) yang berasal dari kumpulan awan. Awan-awan tersebut bergerak mengelilingi dunia, yang diatur oleh arus udara. Sebagai contoh, ketika awan-awan tersebut bergerak menuju pegunungan, awan-awan tersebut menjadi dingin, dan kemudian segera menjadi jenuh air yang kemudian air tersebut jatuh sebagai hujan, salju, dan hujan batu (hail), tergantung pada suhu udara sekitarnya.
Evaporasi (penguapan)
Ketika air dipanaskan oleh sinar matahari, permukaan molekul-molekul air memiliki cukup energi untuk melepaskan ikatan molekul air tersebut dan kemudian terlepas dan mengembang sebagai uap air yang tidak terlihat di atmosfir.
Sekitar 95.000 mil kubik air menguap ke angkasa setiap tahunnya. Hampir 80.000 mil kubik menguapnya dari lautan. Hanya 15.000 mil kubik berasal dari daratan, danau, sungai, dan lahan yang basah, dan yang paling penting juga berasal dari tranpirasi oleh daun tanaman yang hidup. Proses semuanya itu disebut Evapotranspirasi.
Transpirasi (penguapan dari tanaman)
Uap air juga dikeluarkan dari daun-daun tanaman melalui sebuah proses yang dinamakan transpirasi. Setiap hari tanaman yang tumbuh secara aktif melepaskan uap air 5 sampai 10 kali sebanyak air yang dapat ditahan.
·         SIKLUS KARBON

            Siklus karbon dapat terbagi menjadi dua macam, yaitu siklus dalam reaksi termonuklir berantai dalam binatang dan siklus karbon di bumi. Siklus di bumi ini lebih terkenal dengan siklus karbondioksida karena material yang berpindah adalah CO2. CO2 dalam udara digunakan oleh tanaman untuk reaksi fotosintesis menjadi materi organik (karbohidrat) dengan adanya gabungan dengan air. Senyawa organik tersebut diteruskan kepada konsumen dalam rantai makanan. Energi digunakan oleh makhluk hidup menghasilkan CO2 yang terlepas ke udara ataupun ke air, tergantung dari lingkungan hidup. Namun, senyawa organik tetap ada yang tersisa. Organisme juga mengeluarkan materi sisa (kotoran) yang mengandung karbon serta menjadi senyawa karbon organik setelah mati. Karbon-karbon ini dilepaskan dalam bentuk CO2 ke udara oleh saprovor (mikroorganisme pengurai). Dari udara ini, karbon dalam bentuk CO2 akan kembali digunakan oleh tumbuhan (siklus terjadi). Namun, reaksi oleh saprovor terkadang lambat sehingga senyawa karbon menumpuk dalam jangka waktu yang lama dalam bentuk gambut, batu bara, minyak bumi, ataupun batu karang(Buchari dkk., 2001). Pada ekosistem laut, terdapat karbon terlarut yang akan berubah menjadi cangkang dan tulang organisme laut dan menjadi sedimen. Selain itu, pengangkatan tektonik membawa karbon ke permukaan laut (Basukriadi, 2011).
Siklus karbon adalah proses pemanfaatan CO2 diudara untuk keperluan fotosintesis tumbuhan dan pembentukan CO2 kembali sebagai hasil dari proses respirasi makhluk hidup. CO2 atau karbondiokasida merupakangabungan dari satu molekul karbon dan 2 molekul oksigen. CO2 merupakan gas penyusun atmosfer yang ditemukan dalam jumlah sedikit yaitu sekitar 0,03%. Kadar CO2 di atmosfer berbanding terbalik dengan banyaknya tumbuhan hijau yang ada di sekitarnya. Hal ini disebabkan karena CO2 merupakan komponen utama dalam proses fotosintesi tumbuhan.
Siklus karbon diawali dengan pembentukan karbon (CO2) diudara. CO2 dapat terbentuk karena 2 hal, aktivitas organisme dan aktivitas alam. Aktivitas organisme termasuk respirasi, dekomposisi makhluk hidup yang mati, pembakaran batubara, asap pabrik, dll. Aktivitas alam meliputi erupsi vulkanik. Semua aktivitas diatas merupakan sumber CO2 di alam ini. Terlalu banyak CO2 di udara akan menyebabkan efek rumah kaca.
CO2 diudara kemudian dimanfaatkan oleh tumbuhan untuk proses fotosintesis. Hasil akhir proses fotosintesis adalah amilum dan Oksigen. Oksigen yang dihasilkan kemudian digunakan oleh manusia dan hewan untuk bernafas. Proses pernafasan manusia dan hewan menghasilkan H2O dan CO2. CO2 tersebut kemudian di manfaatkan oleh tumbuhan lagi.. begitu seterusnya.
Dalam ekosistem air, pertukaran CO2 di air dengan diatmosfer berjalan secara tidak langsung. Karbon dioksida berikatan dengan air membentuk asam karbonat yang akan terurai menjadi ion bikarbonat. Bikarbonat adalah sumber karbon bagi alga yang memproduksi makanan untuk diri mereka sendiri dan organisme heterotrof lain. Begitu pula sebaliknya, saat organisme air berespirasi, CO2 yang mereka keluarkan menjadi bikarbonat.
·         SIKLUS NITROGEN
 Nitrogen dapat ditemui di alam dalam bentuk bebas (di udara) maupun di dalam tanah. Nitrogen ini akan diikat oleh tanaman dalam bentuk gas N2, serta diambil dari tanah dalam bentuk amonia (NH3), ion nitrit (N02- ), dan ion nitrat (N03-) dengan bantuan bakteri, misalnya Marsiella crenata. Di dalam tanah, terdapat juga bakteri yang mengikat nitrogen secara langsung yaitu Azotobacter sp. dan Clostridium sp. Mereka menggunakan nitrogen untuk dijadikan senyawa penyusun tubuh yaitu protein. Saat baketri itu mati, timbul zat urai berupa amonia. Amonia akan terlepas ke udara, atau dinitrifikasi oleh bakteri nitrit, yaitu Nitrosomonas dan Nitrosococcus lalu dioksidasi dalam lingkungan aerob sehingga menghasilkan nitrat yang akan diserap oleh akar tumbuhan (proses nitrifikasi). Selanjutnya oleh bakteri denitrifikan, nitrat diubah menjadi amonia kembali,dan amonia diubah menjadi nitrogen yang dilepas ke udara. Nitrogen di udara akan diikat kembali oleh tanaman, dan sebagian bereaksi dengan hidrogen atau oksigen dengan bantuan kilat/ petir. Dengan cara ini, siklus nitrogen berulang (Riastuti, 2011).
Siklus nitrogen adalah proses perubahan nitrogen anorganik menjadi nitrogen organik yaitu amonia (NH3), NO2,NO3 kemudian menjadi nitrogen anorganik lagi. Nitrogen merupakan unsur penting dalam pembentukan asam amino, asam nukleat baik ARN ataupun ADN. Nitrogen adalah komponen gas yang paling banyak terkandung di atmosfer yaitu kurang lebih 80%. Nitrogen yang ada di atmosfer ditemukan dalam bentuk N2 (gas Nitrogen) disebut sebagai nitrogen anorganik.
Untuk dapat dimanfaatkan oleh makhluk hidup, nitrogen anorganik harus di ubah terlebih dahulu menjadi nitrogen organik. Tidak semua makhluk hidup dapat merubah nitrogen anorganik menjadi nitrogen organik. Proses perubahan nitrogen menjadi materi organik hanya bisa dilakukan oleh mikroorganisme prokariota tertentu yang memiliki kemampuan untuk menfiksasi nitrogen menjadi amonia. Serta oleh reaksi nitrogen dengan oksigen atau hidrogen dengan bantuan petir yang menghasilkan senyawa nitrit ataupun nitrat.
Amonia serta nitrit atau nitrat yang terbentuk kemudian diserap oleh tumbuhan sebagai bahan pembentuk protein. Ketika hewan dan manusia memakan tumbuhan tersebut maka nitrogen yang ada dalam tumbuhan tersebut akan berpindah pada ketubuh hewan dan manusia. Selanjutnya nitrogen dari hewan dan manusia kembali kealam melalui sisa hasil ekresi dalam bentuk urine, atau dekomposisi makhluk hidup yang telah mati oleh bakteri pengurai menjadi garam amonium (NH4) dan gas amoniak (NH3). 
Kemudian oleh bakteri Nitrosomonas (bakteri nitrit) amonia diubah menjadi nitrit. Nitrit oleh bakteri Nitrobacter (bakteri nitrat) kemudian akan di ubah menjadi nitrat. Proses perubahan amonia menjadi nitrit dan nitrat disebut sebagai proses Nitrifikasi. Proses terakhir dalam daur nitrogen adalah perubahan nitrit dan nitrat menjadi gas nitrogen yang hanya bisa dilakukan oleh bakteri denitrifikasi. Nitrogen yang kembali ke atmosfer akan mengulang siklus dari awal lagi, begitu seterusnya. Walau sama-sama penting, daur nitrogen lebih kompleks jika dibandingkan dengan siklus karbon ataupun siklus oksigen.
Secara umum daur nitrogen atau siklus nitrogen terdiri dari tiga tahapan proses, yaitu:
·         Tahap pertama adalah proses perubahan gas nitrogen menjadi amonia oleh bakteri fiksasi nitrogen. Fiksasi nitrogen secara biologis dapat dilakukan oleh bakteri Rhizobium yang bersimbiosis dengan tanaman leguminosa. Bakteri yang berperan dalam fiksasi nitrogen antara lain adalah bakteri Azotobacter dan Clostridium. Selain itu ganggang hijau biru dalam air juga memiliki kemampuan memfiksasi nitrogen.
·         Tahap kedua adalah proses perubahan amonia menjadi nitrit dan nitrat melalui proses nitrifikasi. Amonia diubah menjadi nitrit oleh bakteri nitrit yang disebut bakteri nitrosomonas. Kemudia nitrit yang terbentuk diubah menjadi nitrat oleh bakteri nitrat yang disebut bakteri nitrobakter.
·         Tahap kedua adalah proses perubahan nitrit dan nitrat menjadi nitrogen kembali melalui proses denitrifikasi.
·         SIKLUS OKSIGEN  
Siklus oksigen terkait dengan siklus karbon. Dari proses fotosintesis tanaman, dihasilkan oksigen ke udara. Oksigen ini diperlukan oleh organisme untuk respirasi, menghancurkan bahan organik menjadi senyawa yang lebih sederhana (CO2). CO2 ini akan digunakan kembali untuk fotosintesis dengan hasil samping O2 (siklus berulang). Selain itu, O2 digunakan untuk pelapukan oksidatif dan pembakaran bahan baku fosil. Selain itu, O2 di udara dapat berbentuk ion, atom tereksitasi ataupun ozon O3 akibat pengaruh radiasi ultraviolet. Oksigen tereksitasi akan memancarkan cahaya tampak pada panjang gelombang tertentu menimbulkan fenomena cahaya langit (air glow). Sementara, ozon berfungsi sebagai pelindung bumi karena menyerap radiasi UV (Buchori dkk, 2001).
PROSES TERJADINYA SIKLUS OKSIGEN
Siklus Oksigen
Oksigen merupakan unsur yang vital bagi kehidupan dibumi ini. Oksigen adalah unsur ketigaterbanyak yang ditemukan berlimpah di matahari, dan memainkan peranan dalam sikluskarbon-nitrogen, yakni proses yang diduga menjadi sumber energi di matahari dan bintang-bintang. Oksigen dalam kondisi tereksitasi memberikan warna merah terang dan kuning-hijau pada Aurora Borealis.

Oksigen merupakan unsur gas, menyusun 21% volume atmosfer dan diperoleh denganpencairan dan penyulingan bertingkat. Atmosfer Mars mengandung oksigen sekitar 0.15%.dalam bentuk unsur dan senyawa, oksigen mencapai kandungan 49.2% berat pada lapisankerak bumi. Sekitar dua pertiga tubuh manusia dan sembilan persepuluh air adalah oksigen.

Siklus Oksigen penting untuk kesehatan kita dan lingkungan kita. Kita membutuhkan oksigenuntuk respirasi. Oksigen pada nafas kita merupakan oxidises gula dalam makanan untukmenghasilkan energi. Selama proses ini karbon dioksida dilepaskan dalam atmosfer.Manusia membutuhkan oksigen untuk bernapas, Oksigen diperlukan untuk dekomposisilimbah organik. Air dapat melarutkan oksigen dan inilah oksigen terlarut perairan yangmendukung kehidupan.
Jadi siklus oksigen adalah proses pertukaran oksigen di bumi ini yang berlangsung secaraterus menerus tidak ada habisnya. Selama evolusi awal bumi, oksigen yang dibebaskan dari H2O uap oleh radiasi UV. Ini terakumulasi di atmosfer sebagai hidrogen melarikan diri keatmosfer bumi. Dengan munculnya kehidupan tanaman, fotosintesis juga menjadi sumberoksigen. Oksigen juga dirilis sebagai karbon organik dalam CHO, dan mendapat dimakamkandi sedimen.

·         SIKLUS FOSFOR
Pengertian dan definisi siklus fosfor. Daur Fosfor adalah proses perubahan fosfat dari fosfat anorganik menjadi fosfat organik dan kembali menjadi fosfat anorganik secara kesinambungan dan tanpa jeda. Fosfor adalah komponen penting pada membran sel, asam nukleat dan tranfer energi pada respirasi sel. Fosfor juga ditemukan sebagai komponen utama dalam pembentukan gigi dan tulang vertebrata.
Di alam, fosfor terdapat dalam dua bentuk, yaitu senyawa fosfat organik dan senyawa fosfat anorganik. Fosfat organik adalah sebutan untuk senyawa fosfat yang terkandung dalam binatang dan tumbuhan. Sedangkan fosfat anorganik adalah senyawa fosfat yeng terdapat pada tanah, batuan dan air.
Siklus fosfor atau daur fosfat diawali dengan pembentukan fosfat anorganik oleh alam. Fosfor terdapat di alam dalam bentuk ion fosfat (PO43-) dan banyak terdapat pada batu-batuan. Batu-batuan yang kaya dengan fosfat yang mengalami erosi dan pelapukan terkikis dan hanyut oleh air membentuk larutan fosfat. Larutan fosfat kemudia diserap oleh tumbuhan dan makhluk hidup autotrof seperti protista fotosintesis dan Cyanobacteri. Manusia dan hewan memperoleh fosfat dari tumbuhan yang dimakannya. Jika kandungan fosfta dalam tubuh makhluk hidup berlebihan maka fosfat akan dikeluarkan kembali kealam dalam bentuk urine ataupun feces yang kemudian diuraikan oleh bakteri pengurai kembali menjadi fosfat anorganik. Selain dari sisa-sisa metabolisme tubuh, fosfat juga di peroleh dari dekomposisi makhluk hidup yang telah mati oleh bakteri pengurai.
Fosfat juga seringkali digunakan sebagai pupuk penyubur tanah. Sumber fosfat bukan hanya berasal dari batu-batuan tapi juga dari kotoran hewan yang disebut guano. Guano adalah nama dari sejenis kotoran burung laut yang merupakan sumber utama fosfor dunia terutama yang kemudian diolah menjadi pupuk.
Di alam, fosfor terdapat dalam dua bentuk, yaitu senyawa fosfat organik (pada tumbuhan dan hewan) dan senyawa fosfat anorganik (pada air dan tanah). Fosfat organik dari hewan dan tumbuhan yang mati diuraikan oleh dekomposer (pengurai) menjadi fosfat anorganik. Fosfat anorganik yang terlarut di air tanah atau air laut akan terkikis dan mengendap di sedimen laut. Oleh karena itu, fosfat banyak terdapat di batu karang dan fosil. Fosfat dari batu dan fosil terkikis dan membentuk fosfat anorganik terlarut di air tanah dan laut. Fosfat anorganik ini kemudian akan diserap oleh akar tumbuhan lagi. Siklus ini berulang terus menerus.
·         SIKLUS BESI (Fe)
Besi adalah logam yang dihasilkan dari bijih besi, dan jarang dijumpai dalam keadaan unsur bebas. Besi atau ferrum biasanya bersimbol Fe. Kelarutan besi tergantung kepada nilai pH dan ketersediaan karbon dioksida. Iron ferro sebagai Fe (OH)2 dapat dilarutkan sampai 100 ppm pada pH 8 dan sampai 10.000 ppm pada pH 7. Dalam ketersediaan karbon dioksida kelarutan ferro carbonate 1 sampai 10 ppm pada pH antara 7 dan 8, meskipun dapat menjadi 100 ppm untuk pH 6 sampai 7. Untuk mendapatkan unsur besi, campuran lain mesti disingkir melalui pengurangan kimia. Besi dalam bentuk zat besi amat penting bagi semua organisme, kecuali bagi sebagian kecil bakteria. Tempat huni bakteri besi ini dalam perairan asam dari pabrik bijih logam yang mengandung sulfida logam seperti pirit besi (FeS2). Bakteri melakukan penyediaan asam belerang dan regenerasi dari Fe, komponen ini terpakai pada pelapisan biji logam.
Di antara bakteri pengoksidasi besi, yang terkenal ialah Thiobacillus ferrooxidans. Spesies ini dapat hidup ototrof dengan menggunakan ion besi dan sulfur sebagai donor elektron. Yang lainnya ialah Sulfolobus dari golongan Archaea dan bakteri Gallionella, Leptothrix. Reaksi umumnya: Fe2+ + bakteri besi à Fe3+. Dengan kata lain, ion ferro atau besi (II) dioksidasi oleh bakteri besi menjadi ion ferri atau besi (III). Oksidasi besi ini dapat berlangsung secara anaerob maupun aerob.
Besi digunakan untuk menyehatkan tanaman dan pertumbuhan hijau tua. Seperti halnya magnesium, besi merupakan mineral utama untuk fotosintesis. Tanaman harus mendapatkan besi untuk membuat kloro_l. Besi sangat melimpah di dalam tanah atau batuan, sehingga suplementasi nutrisi ini tidak diperlukan untuk tanaman.
Besi dapat bersumber dari beberapa mineral, seperti goethit (_-FeOOH), limonit (FeOOH _ nH2O), hematit (_-Fe2O3), magnetit (FeO _ Fe2O3), dan siderite (FeCO3). Goethit mempunyai sistem kristal ortorombik dan umumnya prismatic panjang. Mineral ini biasanya dijumpai berwarna coklat kehitaman atau coklat kekuningan/kemerahan, kilap logam dengan kekerasan 5 . 51/2 dan berat jenis 3,3 . 4,3. Hidrolisis mineral ini menghasilkan mineral limonit, yang biasanya sebagai penyusun utama dari lapisan tanah merah.
Besi (Fe), salah satu unsur yang dibutuhkan untuk metabolisme tubuh, tetapi bila > 1 ppm menimbulkan bau dan rasa tidak enak, warna air akan kemerahan oksida besi baik dalam senyawa ferri atau ferro akan dapat merusak saringan air dan pelunak resin. dan dapat mempengaruhi kesehatan ginjal.
Untuk beberapa kadar logam yang diperiksa melebihi batas ambang, perlu dilakukan proses kimia, misalnya untuk Hg yang melebihi batas dapat ditambahkan NaCl, tetapi hasil endapannya tidak boleh dibuang begitu saja karena akan meracuni lingkungan. Untuk bakteri koli yang terkandung cukup diatasi dengan memasak airnya agar bakteri koli tersebut mati.
·         SIKLUS MANGAN (Mn)
Mangan diserap dalam bentuk ion Mn++, seperti unsur hara lainnya, Mn dianggap dapat diserap dalam bentuk kompleks  khelat. Mn dalam tanaman tidak dapat bergerak atau beralih tempat dari organ yang satu ke organ lain yang membutuhkan. Mangan terdapat dalam tanah berbentuk senyawa oksida, karbonat dan silikat dengan nama pyrolusite (MnO2), manganite (MnO(OH)), rhododhirosite (MnCO3) dan rhodoinite (MnSiO3) (Davidesau, 1980). Mn umumnya terdapat dalam batuan primer terutama dalam bahan ferro magnesium. Mn dilepaskan dari batuan karena proses pelapukan batuan. Hasil pelapukan batuan. Hasil pelapukan batuan adalah mineral sekunder, terutama pyrolusite (MnO2) dan mangannite (MnO(OH)). Kadar Mn dalam tanah berkisar antara 300-2000 ppm. Bentuk Mn dapat berupa kation Mn2+ atau mangan oksida, baik bervalensi dua maupun valensi empat.
Mangan ada di air tanah umumnya dalam frekuensi yang lebih kecil dan konsentrasi yang lebih kecil (lebih dari 0.2 ppm) dari iron yang mirip sifatnya. Dijumpai sebagai mangan bicarbonate yang terlarut yang berubah menjadi mangan hidroksida yang tidak larut jika berkontak dengan oksigen. Kotoran yang disebabkan mangan lebih sulit dihilangkan daripada iron. Slime yang dibuat oleh bakteri serupa dengan bakteri iron yang juga mengoksidasi garam mangan menjadi bentuk tidak terlarut. Mangan terlarut dan iron dapat distabilkan dengan penambahan sejumlah kecil sodium hexametaphosphate ke air tanah sebelum berkontak dengan udara. Ini menunda presipitasi campuran iron dan mangan, waktu penundaan bervariasi dengan kuantitas bahan kimia yang ditambahkan. Adapun  bakteri pengoksidasi mangan yang umum antara lain Leptothrix discophora.
Siklus mangan ini dapat kita lihat dalam suatu proses produksi fuel gas baru dari sumber karbon padat. Pada siklus mangan ini terdapat empat tahap, antara lain :
·         Produk carbide yang berasal dari Mn (oksida) dan karbon padat
xMn + yC  MnxCy atau, xMnOz + (y+zx)C  MnxCy + xzCO
·         Produk fuel gas yang berasal dari hydrolysis carbide
MnxCy + H2O  H2 + hydrocarbon + xMn(OH)2
1.    Reaksi oksidasi yang spontan dari Mn(OH)­2 menjadi Mn2O3
2.    Regenerasi karbit dari Mn2O3 dan sumber karbon baru.

1 komentar:

  1. Casino Slot Machines in North Carolina - Dr. DMC
    Find Casino Slot Machines in 경산 출장안마 North Carolina 광주광역 출장마사지 for 파주 출장샵 free, or try your luck at a live casino! · A-Z Casino · The Slots · 속초 출장샵 Blackjack. 논산 출장마사지

    BalasHapus